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Problem Set #10

Recall that if f(x) ∈ Z[x] is a non-constant polynomial. Let Pf = {p prime|∃n ∈
N such that p|f(n) 6= 0}. Then Pf is infinite. Indeed, assume the contrary and let
p1, ..., pk be a enumeration of Pf . Choose an integer s so that f(s) = t 6= 0; such an s
exists as f is non-constant. Now note that

f(s+ tp1....pkw) = f(s) + tp1...pkg(x) = t(1 + p1...pkg(x))

for some g(x) ∈ Z[x]; in particular f(s + tp1...pkx) is divisible by t for any x ∈ Z.
Now consider h(x) := 1

t
f(s + tp1...pkx) = 1 + p1...pkx) = 1 + p1...pkg(x). But h is

non-constant, so we may choose u ∈ Z with h(u) 6= 1. So h(u) ≡ 1 mod p1...pk, and
thus h(u) is divisible by some prime p 6= pi for i = 1, ..., k. But then p ∈ Pf , which is a
contradiction.
Exercise 1 p 64 (Dirichlet’s Prime Number Theorem)
For every natural number n there are infinitely many prime numbers p ≡ 1 mod n.
Solution:
Let φn(x) ∈ Z[x] be the n-th cyclotomic polynomial, that is the minimal polynomial of
a primitive n-th root of unity ξn over Q.
Let a ∈ Z and consider p prime with p|φn(a) 6= 0 where p - n. Let m be the order of a
mod p; we claim that n = m. Indeed φn|(xn − 1), so p|an − 1 and thus m|n. Assume
m < n. But then p|φn(a), am − 1; but both φn(x), xm − 1 divide xn − 1 and the two
polynomials are relatively prime mod p (indeed, the former is irreducible and does not
divide the latter), so xn−1 has a double root mod p at a. But the discriminant of xn−1
is nn, which is non-zero mod p (as p - n) so this is a contradiction. So we must have
m = n. But note that ap−1 ≡ 1 mod p, so n|p − 1, and thus p ≡ 1 mod n. So any
prime is Pφn(x) either divides n or satisfies p ≡ 1 mod n. But, by the reminder above
the exercise, there are infinitely many primes in Pφn(x), and only finitely many prime
divide n, so there are infinitely many primes satisfying p ≡ 1 mod n.

Exercise 2 p 65
For evert finite abelian group A there exists a Galois extension L|Q with Galois group
G(L|Q) ' A. (We will prove that there is infinitely many such extension).

Solution:
This will first be proven for G cyclic.
Let |G| = n. By Dirichlet’s theorem on primes in arithmetic progressions, there exists a
prime p with p ≡ 1 mod n. Let ξp denote a primitive pth root of unity. Let L = Q(ξp).
Then L/Q is Galois with Gal(L/Q) cyclic of order p − 1. Since n divides p?1, there
exists a subgroup H of Gal(L/Q) such that |H| = p−1

n
. Since Gal(L/Q) is cyclic, it is
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abelian, and H is a normal subgroup of Gal(L/Q). Let K = LH , the subfield of L fixed
by H. Then K/Q is Galois with Gal(K/Q) cyclic of order n. Thus, Gal(K/Q)?G.
Let p and q be distinct primes with p ≡ 1 mod n and q ≡ 1 mod n. Then there exist
subfields K1 and K2 of Q(ξp) and Q(ξq), respectively, such that Gal(K1/Q) ' G and
Gal(K2/Q) ' G. Note that K1 ∩ K2 = Q since Q ⊆ K1 ∩ K2 ⊆ Q(ξp) ∩ Q(ξq) = Q.
Thus, K1 6= K2. Therefore, for every prime p with p ≡ 1 mod n, there exists a distinct
number field K such that K/Q is Galois and Gal(K/Q) ' G. The theorem in the cyclic
case follows from using the full force of Dirichlet’s theorem on primes in arithmetic pro-
gressions: There exist infinitely many primes p with p ≡ 1 mod n.
The general case follows immediately from the above argument, the fundamental theorem
of finite abelian groups, and a theorem regarding the Galois group of the compositum of
two Galois extensions.

Exercise 3 p 65
Every quadratic number field Q(

√
d) is contained in some cyclotomic field Q(ξn), ξn a

primitive nth root of unity.

Solution:
Since Q(

√
a) ⊆ Q(ξm) and Q(

√
b) ⊆ Q(ξn), then Q(

√
ab) ⊆ Q(

√
a,
√
b) ⊆ Q(ξm, ξn) ⊆

Q(ξmn), so in order to prove the general statement it is enough to prove that:

1. Q(
√
−1) = Q(ξ4);

2. Q(
√

2) ⊂ Q(ξ8) and Q(
√
−2) ⊆ Q(ξ8).

3. If p is a prime congruent to 1 modulo 4,then Q(
√
p) ⊆ Q(ξp).

4. If p is a prime congruent to 3 modulo 4, then Q(
√
−p) ⊆ Q(ξp).

1. is obvious. 2. come from the fact that ξ8 = (1 + i)/
√

2. We have proven, p 51 that if
τ is the Gauss sum τ =

∑
a∈(Z/pZ)∗

(
a
p

)
ξa, then τ 2 =

(−1
p

)
p = p∗ and

(−1

p

)
= (−1)

p−1
2 =

{
−1 p ≡ 3 mod 4
1 p ≡ 1 mod 4

(Note that for p prime, Q(
√
p∗) is the unique quadratic field intermediate between Q

and Q(ξp). Indeed, Gal(Q(ξp),Q) ' Z/(p − 1)Z contains a unique subgroup of index
two, so there is a unique quadatic field intermediate between Q and Q(ξp) and we have
just identified that field.)

Exercise 3, 4, 5 p 65

4. Describe the quadratic subfields of Q(ξn)|Q in the case where n is odd.

5. Show that Q(
√
−1), Q(

√
2), Q(

√
−2) are the quadratic subfield of Q(ξn)|Q for

n = 2q, q ≥ 3.

Solution:
We will prove 4. and 5. proving that more generally that if n > 2 is an integer. Define
A = {ai}i=1,...,t as follows: if p is an odd prime factor of n, then p∗ ∈ A. If n is
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divisible by 4, then −1 ∈ A. If n is divisible by 8, then 2 ∈ A. Then Q(ξn) contains
2t − 1 quadratic extensions of Q and they are Q(

√
m) for m any nontrivial product of

distinct elements of A.
By the fundamental Theorem of Galois Theory, the quadratic extensions of Q contained
in Q(ξn) are in 1− 1 correspondence with the subgroups of index 2 of Gal(Q(ξn),Q) '
(Z/nZ)∗. Now if n = 2e23e35e5 ...,

(Z/nZ)∗ ' (Z/2e2Z)∗ × (Z/3e3Z)∗ × (Z/5e5Z)∗ × ....

For p odd and k ≥ 1, (Z/pkZ)∗ is a cyclic group of even order. Also, (Z/2Z)∗ is trivial,
(Z/4Z)∗ ' (Z/2Z), and (Z/2kZ)∗ ' ((Z/2Z) ⊕ (Z/2k−2Z). Thus (Z/nZ)∗ contains
2t − 1 subgroups of index 2. (A subgroup of index 2 is the kernel of an epimorphism
ψ : Gal(Q(ξn),Q)→ Z = 2Z and since Gal(Q(ξn),Q) is isomorphic to the direct sum of
t cyclic group of even order, there are 2t homomorphism from Gal(Q(ξn),Q) to Z/2Z,
one of which is the trivial one.) Since Q(

√
m) ⊆ Q(ξn) for each of the 2t − 1 values

of m in A, by the previous exercise, we see that these are all the quadratic subfields of
Q(ξn).
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